238 research outputs found

    Fermion pair production at LEP2 from 130 to 196 GeV

    Get PDF
    ABSTRACT The article proposes a critical analysis of classical conditioning as a mode of individual influence of the marketing communication. One initially studies it in a cognitive social psychology framework in order to explain how the social psychologists adapted the initial animal model to theorize the advertising influence on the consumers. Classical conditioning is then analyzed within the new paradigm of implicit social cognition. Results concerning broadcast sponsorship experiment are then explained. By clarifying the interactions between explicit attitude and implicit attitude, we trace new research perspectives for the model of classical conditioning and explain its utility for the practitioners of the marketing communication

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Constraints on anomalous QGC's in e+ee^{+}e^{-} interactions from 183 to 209 GeV

    Get PDF
    The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings

    Search for Bs0B^{0}_{s} oscillations using inclusive lepton events

    Get PDF
    A search for Bs oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the prop er time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to Bs mixing is obtained by identifying subsamples of events having a Bs purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Dms>9.5 ps-1 at 95% CL. Combining with the ALEPH Ds based analyses yields Dms>9.6 ps-1 at 95% CL.A search for B0s oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the proper time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to B0s mixing is obtained by identifying subsamples of events having a B0s purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Deltam_s>9.5ps^-1 at 95% CL. Combining with the ALEPH D-s based analyses yields Deltam_s>9.6ps^-1 at 95% CL

    Limit on Bs0B^0_s oscillation using a jet charge method

    Get PDF
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma

    Measurement of the Bs0^0_s lifetime and production rate with Dsl+^-_s l^+ combinations in Z decays

    Get PDF
    The lifetime of the \bs meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different \ds decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic \bs decays. Two hundred and eight \dsl candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured \bs lifetime of \mbox{\result .} Using a larger, less constrained sample of events, the product branching ratio is measured to be \mbox{\pbrresult

    Measurement of the tau lepton lifetime

    Get PDF

    Measurement of the W mass in e+ee^+ e^- collisions at 183 GeV

    No full text
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb1^{-1} collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qqbarqqbarqqbarqqbar and all l\nuqqbar channels to give the following W masses: mWhadronic=80.461±0.177(stat.)±0.045(syst.)±0.056(theory)GeV/c2m_{W}^{hadronic} = 80.461 \pm 0.177(stat.) \pm 0.045(syst.) \pm 0.056(theory) GeV/c^2, mWsemileptonic=80.326±0.184(stat.)±0.040(syst.)GeV/c2m_{W}^{semileptonic} = 80.326 \pm 0.184(stat.) \pm 0.040(syst.) GeV/c^2 where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives $m_{W} = 80.393 \pm 0.128(stat.)\pm 0.041(syst.) \pm 0.028(theory)\pm 0.021(LEP) GeV/c^2

    Measurement of Lambda polarization from Z decays

    No full text

    Measurement of the tau lepton lifetime

    Get PDF
    corecore